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a b s t r a c t

Six segments of quadratic Bézier curve are joined together according to some geometrical rules to
approximate fold shape. In a classification of folds based on this method, an ideal fold shape is deter-
mined by two parameters. The first one, uc, termed the axial lift-up ratio of the central part, generates the
folds within a broad spectrum of forms ranging from box folds to chevron folds. The other one, g, is the
interlimb angle. In the quantitative description of complete folds with multiple layers, three new
parameters, q, T and E are used to describe the deflection angle of the axial plane, the thickness increment
of hinge zone and the limb elongation, respectively. Based on the modeling method, the program ‘‘Bézier
Fold Profiler’’ has been developed, with which most types of folds can be simulated by varying thirteen
parameters. Two description methods, complete fold description and individual layer description, can be
used for the quantitative analysis of folds. The description methods are carried out by the visual
matching of the fold profile displayed on-screen from an imported digital image. The layer curves of the
model are displayed on the fold image. This method has the advantage of speed and simplicity.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fold shapes control the location of some important mineral
resources such as oil, gas and saddle-reef gold deposits. The precise
description of the geometry of folds is in many cases the only tool
available to analyze the origin and evolution of these structures.
The research on geometry and kinematics of folding is ongoing, but
still it does not satisfy the requirements demanded from real
application.

There have already been numerous studies concerned with fold
shape, in which a fold is approximated by a series of mathematical
functions (Bastida et al., 2005). For example, Chapple (1968) and
Stabler (1968) have used the Fourier analysis for the quantitative
description of fold shapes, each limb being characterized by several
coefficients of a Fourier sine series. However, the number of coef-
ficients is too large and inconvenient for classification. Hudleston
(1973) improved the method, using only two Fourier coefficients to
classify the shape of folds, and distinguished 30 idealized fold forms
for comparison with natural folds. Nevertheless, this method only
gives a rough approximation to the function that describes fold.
Other methods have employed other types of mathematical
developed in this paper are
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functions. Bastida et al. (1999) proposed a method to approach fold
shapes using power functions. Their method is based on the use of
two parameters: the exponent, n, describing the shape, and the
amplitude/wavelength ratio. Aller et al. (2004) suggested that
different fold shapes can be matched with portions of conics and
distinguished on a graph of eccentricity and aspect ratio. Srivastava
and Lisle (2004) used computer-aided Bézier curve analysis and
reduced eight variables to only two variables for describing a fold.
The first parameter, L, is related to the distribution of curvature on
a single limb of a fold between the hinge point and the inflection
point, and the other parameter, R, is related to the ratio of ampli-
tude to wavelength. These studies have employed a number of
different methods for classification and description of folds.

The aim of this paper is to present a geometrical analysis of fold
profiles based on the approximation of fold geometries by six
quadratic Bézier curves, which are joined together according to
some geometrical rules. As in Srivastava and Lisle (2004), an ideal
fold is described and classified using two parameters. The results
can be plotted on a graph which reflects the main geometrical
features of the fold profiles. However, the method of Srivastava and
Lisle analyzes individual fold limbs; and the shape of a complete
fold can hardly be determined by only two variables. Our new
model extends the application of Bézier curves that can simulate
a broader spectrum of complete fold shapes ranging from straight-
limbed chevron folds, to rounded geometries, and even box folds.
Further, three more parameters are used to describe complex fold
shape. This paper offers a feasible method for fold classification and
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Fig. 1. A quadratic Bézier curve defined by three control points: P0, P1, P2. The two lines
P0P1 and P2P1 are the tangents at the points P0 and P2 respectively.
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quantitative description, which can be used in further geometric
and kinematic studies of folds (Liu et al., 2009).
2. Modeling and fold classification

The useof Béziercurves as a tool to describe curvatures and surfaces
was introduced by French engineers of the automobile industry, in
particular Bézier (1966, 1967). More recently, the concept was recog-
nized as useful in geological description (De Paor, 1996) and used as
a tool for fold shape analysis (Srivastava and Lisle, 2004) and flanking
structures description (Coelho et al., 2005). Bézier curve has demon-
strated its versatility for analyzing a wide range of fold geometries.
However, several segments of curve should be joined to approximate
the fold shape, since it is hard to describe a fold by only one curve
defined by mathematic functions. In this paper, an individual folded
layer is approximated by six segments of quadratic Bézier curve.
Fig. 2. Modeling of an ideal fold based on the connection of six quadratic Bézier curves. (a) D
the core and the hinge of the fold, respectively; FG is the axial plane of the fold. (c) Find the c
be drawn by connecting the end points with Bézier curves. (d) Two limbs are drawn accor
2.1. Quadratic Bézier curves

A quadratic Bézier curve is uniquely defined by the position of
three points (Fig. 1): two points, P0(x0, y0) and P2(x2, y2) marking the
two ends of the curve and one further control point, P1(x1, y1). The
parametric equations of a segment of a quadratic Bézier curve are
(Bézier, 1966, 1967):

xðtÞ ¼ ð1� tÞ2x0 þ 2ð1� tÞtx1 þ t2x2 (1a)

yðtÞ ¼ ð1� tÞ2y0 þ 2ð1� tÞty1 þ t2y2 (1b)

The parameter t indicates positions along the Bézier curve from the
start point P0, where t¼ 0, towards the end point P2, where t¼ 1.
The Bézier curve, made up of a succession of points corresponding
to different t values, is therefore defined by the coordinates of
points P0, P1 and P2. Since P0P1 and P2P1 are the tangent at the points
P0 and P2 respectively, the quadratic Bézier curve can be deter-
mined by the two end points (P0 and P2) and the slope (k0 and k2) of
the corresponding segments (P0P1 and P2P1). The two parameters,
x1 and y1 (Eqs. (1)) can be replaced by the slopes:

x1 ¼ ðk0x0 � k2x2 þ y2 � y0Þ=ðk0 � k2Þ (2a)

y1 ¼ ðk0k2x0 � k0k2x2 � k2y0 þ k0y2Þ=ðk0 � k2Þ (2b)
2.2. Modeling of an ideal fold

The ideal fold is a symmetrical fold with rounded shape and
constant orthogonal thickness. In this example of modeling, limb
dips are a1¼60� and a2¼120�. The folded layer is divided into
three parts by two inflection points (points B and C in Fig. 2). Each
part is approximated by two Bézier curves that are connected at the
‘‘hinge point’’ (such as point G in Fig. 2). Hence, each layer of the
fold is approximated by six Bézier curves. The ideal fold can be
drawn by the following steps:
raw an isosceles triangle ABC; a1 and a2 represent the limb dips. (b) Points F and G are
ontrol points of each bed on segments BD, FG and CE equidistantly. The central part can
ding to the rules shown for the central part. (e) The final shape of the ideal fold.



Fig. 3. (a) u¼ lKL/lJL, which represents axial lift-up ratio is used to describe the distribution of curvature between the hinge point and the inflection point. (b) A spectrum of fold
forms with the uniform interlimb angle (60�) and various u values from 0 to 1.0, shows that the fold shape tends to be sharper with the increase of u.

C. Liu et al. / Journal of Structural Geology 31 (2009) 575–581 577
(1) Confine the area of the fold. Draw an isosceles triangle ABC, in
which the points B and C represent the inflection points on the
fold limbs. AB and AC are the tangents of the folded layer at
points B and C, respectively. The angles that AB and AC form
with the x axis represent the limb dips (i.e. a1 and a2). The
origin of coordinates is set at point O, with AO being the
bisector line of :BAC. Hence, BO¼ CO¼w, where w is
a parameter that can be used to describe the fold size.

(2) Find the fold core. Draw BD and CE perpendicular to AB and AC,
respectively, and let BD¼ CE¼w. Then, draw perpendiculars to
BD and CE in D and E, respectively. The two perpendiculars
intersect at point F, which is defined as the fold core. Find
another point G along the direction of FA, which makes FG¼w.
The point G and the segment FG are defined as the hinge point
and the axial plane, respectively. The angle that the segment FG
forms with the x axis is defined as the dip angle of the axial
plane, which can be calculated from the following equation:

a ¼ ða1 þ a2Þ=2 (3)

Note that the triangle ABC is an isosceles triangle, points F and G

should be on the line AO.

(3) Draw the central part. Mark the end points of each layer on
segments BD, FG and CE equidistantly, and connect the corre-
sponding end points with Bézier curves. For example, the
points, H, K and I, are the end points of the bottom layer.
Fig. 4. Fold shapes defined by uc and g. Note that we use the bottom layer to represent
a complete fold.
Connect the corresponding end points with two Bézier curves,
one Bézier curve with the end points H and K and the other K
and I. Each of the two Bézier curves is drawn according to the
position of its two end points and the slope at the end points in
Eqs. (1) and (2). The common slope of the two Bézier curves at
the hinge point K, where they are connected, is assumed to be
perpendicular to the fold axial plane, while the slopes at the
end points H and I are given as the dips of fold limbs (a1 and a2

respectively). As a result, the bottom layer is determined by the
three parameters: w, which determines the size of fold, a1 and
a2, which are the limb dips. Since the Bézier curve of other
layers can also be drawn in a similar way, the central part of the
anticline is defined by only three parameters.

(4) Draw the limbs. The left side of the left limb connects with
horizontal strata, while the other side connects with the inflec-
tion point B and the corresponding segment BD. Similarly, the left
side of the right limb connects with the inflection point C and the
segment CE. Repeat steps (1)–(3) to draw the two limbs (Fig. 2d).

Remove all the assistant lines and points, Fig. 2e shows the final
shape of the ideal fold, which is determined by only three
parameters: w, a1 and a2.
2.3. A method of fold classification

An ideal fold which approximates to a cosine curve shape has
been drawn according to the basic modeling method described
above. However, in order to simulate more types of folds, such as
chevron folds and box folds, a new shape parameter is used to
describe the curvature distribution of the fold. Note that the shape of
the hinge zone is controlled by the position of FG. Move FG along the
direction of FG, hinge zone will be sharper, changing from cosine
curves to the chevron shape with the increase of displacement.
Conversely, move FG in the opposite direction, and an approxima-
tion to box forms is obtained (Fig. 3b). Hence, a new parameter u,
termed axial lift-up ratio, is used to describe the distribution of
curvature between the hinge point and the inflection point:

u ¼ lKL=lJL (4)

where lKL and lJL represent the length of the line segments KL and JL
in Fig. 3a, in which H, K and I are the three control points of the
bottom layer (see also Fig. 2c); the point J is determined from the
inflection points H and I and the dips of two fold limbs (JH and JI are
parallel to AB and AC, respectively).

Sharpness of the left, central and right parts are determined by
corresponding axial lift-up ratio respectively ul, uc and ur. However,
only uc is used to distinguish fold shapes in the classification of
ideal folds. The left and right parts are drawn following the method
introduced in Section 2.2, which maintain an approximately



Fig. 5. (a) q ¼ :AOA0 , termed the deflection angle of the axial plane. (b–c) Anti-clockwise deflection of axial plane leads to the shortening of the right side.
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uniform distribution of curvature. Fig. 3b shows how the shape
parameter uc controls the curvature distribution of folds.

As described above, the method defines an ideal fold based on
four parameters, w, a1, a2 and uc. Since it is impractical to classify
folds based on four parameters, we will reduce four parameters to
two parameters for describing the fold shape. A classical parameter
used to describe the fold tightness is the interlimb angle (g), which
was used by Fleuty (1964) to differentiate the following types of
folds: gentle (180� > g> 120�), open (120� � g> 70�), close
(70� � g> 30�), tight (30� � g> 0�), isoclinal (g¼ 0�) and elasticas
(g< 0�). Firstly, a1 and a2 change the fold shape by varying the
interlimb angle, so we choose the interlimb angle g to replace a1

and a2:

g ¼ a2 � a1 (5)

Secondly, we assume w¼ 1, since the curve shape is not affected by
the fold size.

As a result of these simplifications, the shape of an ideal fold is
defined by only two parameters: uc and g. Fig. 4 shows how the two
parameters control the fold shape. When uc¼ 0, corresponds to box
folds with curvature concentrated in two corners. On the other end,
uc¼ 1, corresponds to approximately chevron folds with straight
limbs and curvature concentrated at the hinge. When 0< uc< 1,
with the intermediate forms appear that give a good fit of common
fold shapes as box folds, cosine curves, parabolas and chevron folds.
Along the vertical axis, four main types of folds are distinguished:
gentle, open, close and tight. Unfortunately, isoclinal folds (g¼ 0)
are not included in this classification, since the definition equation
of u (Eq. (4)) requires that the tangents (JH and JI in Fig. 3a) at two
inflection points should intersect at one point (J in Fig. 3), whereas
g¼ 0 leads to parallel lines without intersection point.
Fig. 6. Thickness increment of the hinge zone: T¼ (FG�w)/w. (a) T¼ 0, corresponds to cons
to change the layer thickness of the hinge zone.
3. Quantitative description of fold shape

An ideal fold is determined by two parameters uc and g.
However, its impossible to describe a complex natural fold by only
two parameters. Here, three more parameters are introduced to
describe more types of folds, such as inclined folds, overturned
folds etc.
3.1. Deflection angle of axial plane

A new parameter q, which is termed deflection angle of the axial
plane, is defined to make possible the fit of inclined folds. In Fig. 2,
the axial plane FG (i.e. OA) is the symmetry axis of the fold.
Deflection of the axial plane will lead to distortion of hinge zone,
while limb dips and layer thickness are unchanged. Consequently,
dip angle of the axial plane should be redefined as:

a ¼ ða1 þ a2Þ=2þ q (6)

In Fig. 5a, q ¼ :AOA0, indicates the deflection angle of the axial
plane, since the axial plane F0G0 is always parallel to O0A0 . In Fig. 5b,
B0D0 and C0E0 are still perpendicular to AB and AC, respectively; the
perpendiculars of B0D0 and C0E0 intersect at point F0; and Bézier
curves are drawn according to the rules presented in Section 2.2.
Application of parameter q enables the description of inclined folds
in this model (Fig. 7a).
3.2. Thickness increment of the hinge zone

Layer thickness changes are common in natural folds, especially
in the fold hinge area.
tant orthogonal thickness. (b–c) When T> 0, the hinge point is moved to the position G0



Fig. 7. Various fold forms controlled by the parameters listed to the right. (a) Inclined fold, (b) Overturned fold. (c) Chevron fold. (d) Monocline. (e) Fan fold. (f) Box fold. Note that
parameters which equal to zero are not shown.
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Therefore, another parameter T is introduced to describe the
thickness increment of the hinge zone, which is defined as:

T ¼ ðlFG �wÞ=w (7)

where lFG represents the length of segment FG in Fig. 6b, and w is
the parameter mentioned above, which has been used to describe
the fold size. Fig. 6 illustrates how the parameter T controls the
layer thickness. When T¼ 0, the layer thickness is constant. When
T> 0, point G moves along the FG direction, as a result, segment FG
is extended. Consequently, all layers in the fold hinge area tend to
be thicker, while the layer thickness at the inflection points remains
constant (Fig. 6c). Conversely, when T< 0, all layers in fold hinge
area tend to be thinner.
3.3. Limb elongation

In Fig. 7a and c, the fold limb is extended for a distance l, which
makes possible to set the two limbs on the same level. Limb
elongation (E) is expressed as:

E ¼ l=w (8)

Fig. 7a shows that the anti-clockwise deflection of the axial plane
leads to a small shortening of the right side (see also Fig. 5c). And in
Fig. 7c, since the right limb is steeper than the left limb, in order to
keep two limbs at the same level, the left part is moved for a certain
Fig. 8. The complete fold description method applied to two examples. (a) A drag fold assoc
Xinjiang province, China.
distance along the dip direction. The parameter E controls the
length of limbs and the vertical position of the corresponding
horizontal layers.

As a result, the shape of a fold is determined by the thirteen
parameters: a1, a2, ul, ql, Tl, uc, qc, Tc, ur, qr, Tr, El and Er. The subscripts,
l, c and r, represent the parameters of left part, central part and right
part, respectively. Note that the interlimb angle (g) is not used in
the quantitative description, as it can be calculated from Eq. (5).

4. The program ‘‘Bézier Fold Profiler’’

The complexity of the model presented in this paper makes it
impractical to draw a fold by manual drawing. Inspired by the
method based on modeling curves using dedicated drafting soft-
ware (Srivastava and Lisle, 2004) and a MatLab program for fold
classification (Lisle et al., 2006), this section describes a program for
fold classification and quantitative description, based on the on-
screen matching of an imported image of the fold with mathe-
matically defined Bézier curves. The program, ‘‘Bézier Fold Profiler’’,
is a Flash program running in the web (see the article footnote for
additional information of the program), in which the curves are
remodeled, by changing their parameters until a close fit is
obtained.

By using ‘‘Bézier Fold Profiler’’, a natural fold can be approxi-
mated according to the procedure below: (1) Import the digital
image of the fold into the program. Adjust the size of the image
iated with a thrust fault, Gaspe Peninsula, Canada. (b) A detachment fold, Tarim Basin,



Fig. 9. The individual layer description method applied to analyze the seismic section of Kuqa foreland fold-and-thrust belt, Xinjiang, China.
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until the layer thickness of the fold equals the default thickness. (2)
Set the limb dips (a1 and a2), limb elongation (E) and the axial lift-
up ratio (u), according to the shape of the natural fold. (3) Change T
if it is necessary. (4) Adjust the deflection angle of the axial plane (q)
and E until the program traces out the natural fold shape.

In general, box folds are difficult to simulate by Bézier curves
because of the lack of inflection points between successive hinges
(Srivastava and Lisle, 2004). However, in the new model, an indi-
vidual folded layer is approximated by six segments of Bézier curve
and a broad spectrum of fold shapes ranging from box forms to
chevron forms can be simulated. Fig. 7 illustrates some general
forms of folds, which are determined by the right-hand description
parameters. Comparing Fig. 7c with Fig. 7f, we see that the main
difference between the chevron fold and the box fold lies in the
different axial lift-up ratio of the central part (uc). Fig. 7d shows that
monoclines can be regarded as folds with a zero dip angle in one
limb. Furthermore, fan folds with a negative interlimb angle could
also be simulated by varying limb dips (Fig. 7e).

5. Description methods and examples

In the program, a fold can be analyzed by two description
methods: complete fold description and individual layer descrip-
tion. For the purpose of illustration of the new methods, we present
three examples here.
Table 1
Quantitative analysis data of the five layers of Fig. 9.

No. a1 a2 ul uc ur El Er g

19� 170� 0.58 0.58 0.75 0.42 0.42 151�

19� 150� 0.65 0.62 0.6 1.1 0.25 131�

19� 140� 0.7 0.47 0.45 1.05 0.36 121�

32� 134� – 0.48 0.4 – 0.7 102�

38� 127� – 0.5 0.4 – 0.68 89�
5.1. Complete fold description

This description method analyzes the complete fold by varying
thirteen parameters according to the procedure introduced in
Section 4. In this method, the two parameters q and T are included,
which indicate the relationships between layers. Variation of q

changes the position of the hinge points in each layer, and conse-
quently changes the distribution of curvature between hinge points
and deflection points. With the increase of T, the shape of the upper
layers becomes sharper, while the bottom layer is unchanged
(Fig. 7c). Hence, the parameter T indicates the variation of curvature
distribution between layers.

Fig. 8a shows a natural drag fold in which the dip angle of the
left limb is small, whereas the right limb is nearly vertical, defining
a shape similar to that of Fig. 7b. The layer thickness at the hinge
zone is greater than that of the two limbs, i.e. Tc> 0. Simulation
results are shown in the right-hand side of Fig. 8a. The couple of
data uc¼ 0.45 and g¼ 65� correspond to the parabola shape in the
classification.

The second example (Fig. 8b) is a seismic interpretation map of
a detachment fold. Changes of thickness are small along the folded
layer, which indicates a small T. Since the slope of the left limb is
greater, right limb should be extended to keep the two limbs on the
same level. The simulation results are shown in the right-hand side
of Fig. 8b, which gives a good fit of the natural fold. The couple of
data uc¼ 0.52 and g¼ 120� correspond to the parabola shape in the
uc–g graph.

5.2. Individual layer description

The complete fold description method is unsuitable for those
irregular fold forms with high deformation, such as cases of uneven
changes of layer thickness or curvilinear axial plane. The individual
layer description method is introduced to deal with these situa-
tions. In this method, each bed of a natural fold is approximated by
the bottom layer (Fig. 2e) of the default fold in the program, and
consequently determined by a series of shape parameters. The
shape of the bottom layer is not affected by the parameter T, which
can be ignored in this method. Furthermore, we assume q¼ 0, as
the bottom curves almost remain unchanged when q increases.
Therefore, each folded layer is determined by seven parameters: a1,
a2, ul, uc, ur, El and Er.
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Fig. 9 is a seismic section map of Kuqa foreland fold-and-thrust
belt, Xinjiang, China. The individual layer description method was
used to analyze the five layers which have been drawn on this
cross-section. The parameters of these layers are listed in Table 1,
which show that the interlimb angle decreases as the layer depth
decreases, and indicates an incremental thickness variation of the
hinge zone. However, the five couples of uc and g data still gather
around the parabola forms in the uc–g graph (Fig. 4). The layer
curves defined by the data of Table 1 are illustrated on the right
lower part of Fig. 9, in which the folded area has been divided into
three regions by connecting the inflection points of the layers. The
gray central part with higher deformation indicates the possible oil
and gas accumulation region. The curvilinear axial plane can be
drawn on the map by connecting the hinge points of the folded
surfaces. The geometry observed indicates that the complete
description method is not appropriate in this case.

6. Discussions and conclusions

This modeling of folds is based on the use of quadratic Bézier
curves, and involves joining together several segments of these
curves to approximate fold shapes. In the program – Bézier Fold
Profiler, a fold can be analyzed by the visual matching of the fold
profile displayed on-screen from an imported digital image, which
has the advantage of speed and simplicity. The results can be
conveniently plotted on the uc–g graph in Fig. 4, where uc and g are
respectively the axial lift-up ratio of central part and the interlimb
angle.

In order to simulate complex natural folds, three more
parameters, q, T and E, were used to express the deflection angle of
the axial plane, the thickness increment in the hinge zone and the
limb elongation, respectively. However, it should be noted that the
model does not completely represent all natural folds. Rather,
a natural fold can be approximated by varying these parameters,
which is convenient for quantitative analysis and comparison of
folds. Further, more description parameters could be added to the
model to simulate more complex fold shapes.

We have introduced two description methods to analyze the
fold shape. The first method, complete fold description method, is
used to analyze multiple layers. The advantage of this method is
that a complete fold can be determined by thirteen parameters,
which can be used in a later quantitative analysis of the fold.
However, this method is not a general method, as it requires that
the hinge points and deflection points are located at one straight
line. Alternatively, the other method, individual layer description
method, can be used to describe each individual folded layer. This
method gives a more detailed description of a fold, and each folded
layer is defined by seven parameters.

This paper offers a feasible way for fold classification and
quantitative description. Furthermore, this method can also be
used in computer modeling of folds, which is a good tool for further
geometric and kinematic studies (Liu et al., 2009).
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